Highly Comparative Feature-Based Time-Series Classification
نویسندگان
چکیده
منابع مشابه
Feature-based time-series analysis
I introduce feature-based time-series analysis. The time series as a data type is first described, along with an overview of the interdisciplinary time-series analysis literature. I then summarize the range of featurebased representations for time series that have been developed to aid interpretable insights into time-series datasets. Particular emphasis is given to emerging research that facil...
متن کاملModel-Based Time Series Classification
We propose MTSC, a filter-and-refine framework for time series Nearest Neighbor (NN) classification. Training time series belonging to certain classes are first modeled through Hidden Markov Models (HMMs). Given an unlabeled query, and at the filter step, we identify the top K models that have most likely produced the query. At the refine step, a distance measure is applied between the query an...
متن کاملA Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection
Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...
متن کاملA Time Series Forest for Classification and Feature Extraction
A tree-ensemble method, referred to as time series forest (TSF), is proposed for time series classification. TSF employs a combination of entropy gain and a distance measure, referred to as the Entrance (entropy and distance) gain, for evaluating the splits. Experimental studies show that the Entrance gain improves the accuracy of TSF. TSF randomly samples features at each tree node and has com...
متن کاملFeature Extraction over Multiple Representations for Time Series Classification
We suggest a simple yet effective and parameter-free feature construction process for time series classification. Our process is decomposed in three steps: (i) we transform original data into several simple representations; (ii) on each representation, we apply a coclustering method; (iii) we use coclustering results to build new features for time series. It results in a new transactional (i.e....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2014
ISSN: 1041-4347,1558-2191,2326-3865
DOI: 10.1109/tkde.2014.2316504